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S U M M A R Y  
Thickness-twist vibrations with energy trapping in a monolithic filter consisting of an infinite piezoceramic plate with 
N infinitesimally thin electrodes evaporated on to each face are analysed. By applying the Fourier transform technique, 
the linear three-dimensional equations for a piezoceramic plate are reduced to integral equations for the charge 
distributions on the electrodes. An approach for solving these equations and numerical results for a dual are given. 

1. Introduction 

In recent years attempts have been made to compute the eigenfrequencies and admittances of 
monolithic filters. A monolithic filter consists of a piezoelectric plate with two or more elec- 
trodes evaporated on to both faces in such. a way that a symmetrical arrangement with respect 
to the middle plane results. AT-cut quartz plates or piezoceramic plates polarized in their plane 
or perpendicular to the faces are usually employed. A thickness vibration is set up in the plate 
by electrical excitation. 

In a certain range of values of the exciting frequency the energy stored in the plate is mainly 
concentrated in the volumes between corresponding electrodes on the faces. This phenomenon 
is called energy trapping and is due to both the mechanical mass loading caused by the elec- 
trodes and the piezoelectric effect ([1]-[3]).  Monolithic filters are excited in this range of 
frequencies. 

No rigorous analysis of the vibrations of these filters has appeared to date. Only approxim- 
ating treatments of quartz and piezoceramic filters which are infinitely extended in at least one 
direction and partly covered by infinite strip electrodes are known. In quartz filters the mass 
loading is the most important effect causing energy trapping. The treatments of this kind of 
filters have been based on the elastic equations; the piezoelectricity has been neglected ([4], [5]). 
In these investigations thickness-shear and thickness-twist modes were considered. Using the 
Mindlin-approximations, ordinary differential equations have been derived for the electroded 
parts and the parts without electrodes. In addition, boundary conditions at the edge of the 
plate have been stated as well as continuity conditions at the interfaces of the electroded and 
unelectroded regions. The eigenfrequ~ncies determined by the above-mentioned equations 
and conditions are only accurate if the widths of the electrodes and "gaps" between the elec- 
trodes are large with respect to the thickness of the plate. 

In piezoceramic plates the piezoelectricity must be taken into account and the mass loading 
is less important. Approximate resonant frequencies and capacitances have also been computed 
for piezoceramic plates in which a thickness-twist or a thickness-dilation vibration with energy 
trapping is excited ([3], [6]). In [3] a single resonator has been considered, consisting of 
a piezoceramic plate of infinite extent in all directions with one infinite strip electrode evaporated 
on to each face. Wave solutions of the above-mentioned modes have been given for the elec- 
troded and unelectroded parts. By coupling these solutions at the interfaces of these parts, 
resonance spectra and capacitances have been computed. In [6] the analysis for thickness-twist 
has been extended to a filter with N pairs of electrodes. Since the mechanical continuity 
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conditions are only roughly satisfied at the interfaces and the electrical ones not at all, the 
results of these treatments will be only reliable for large values of the ratio's widths of the elec- 
troded and unelectroded Parts over the thickness of the plate. 

The present author has given an exact approach ([7]) for analysing trapped energy modes 
in infinite piezoceramic plates in case mass loading can be neglected, i.e. if the electrodes can 
be assumed to be infinitesimally thin. A plate polarized in its plane has been considered. Both 
faces were covered by infinite strip electrodes running parallel to the polarization. By a potential 
difference between the electrodes thickness-twist waves have been excited. Applying the Fourier 
transform technique to the piezoelectric equations for the complete plate, an integral equation 
for the charge distribution on the electrodes has been derived, which was then solved numeric- 
ally. Correct resonant frequencies for all values of the ratio electrode-width over plate-thickness 
have been obtained. These computations confirmed the presumption that the results given in 
[3] and 1-6] are inaccurate for values of that ratio which are not much larger than 1. 

In this paper the Fourier translbrm technique is applied to thickness-twist vibrations in 
infinite piezoceramic plates covered by an arbitrary finite number of electrodes. Again an 
integral equation is obtained for the charge distributions on the electrodes. The integral form 
is simplified substantially by using the residue theorem for complex functions. The resulting 
equation can be solved by dividing the electrode range into subintervals and by approximating 
the charge distribution by a quadratic polynomial in each subinterval. 

Numerical results are given for a dual consisting of a plate with two pairs of electrodes on 
the faces. Resonant frequencies are computed for a fixed value of the electromechanical 
coupling factor and a number of values of the width of the electrodes and of the gap between 
the electrodes. Resonances are also given for a fixed geometry and numerous values of the 
coupling factor. 

2. Formulation of the problem 

We consider an infinitely extended piezoceramic plate of constant thickness 2h. The plate is 
assumed to be uniformly polarized in its plane. Figure 1 shows a cross section of a part of the 
plate. We choose Cartesian coordinates (xl, x2, x3) with x2 = _+ h defining the faces of the plate. 
The x3-axis is in the direction of polarization. Both faces are covered by N infinitesimally thin 
strip electrodes. The pair of electrodes n, n = 1 . . . .  , N, occupies the regions x2 = _+ h, a, < xl < b,,. 

• 

Figure 1. Cross section of a part of the filter. 

The faces are free of stresses. A periodic vibration is set up in the plate by electrical excitation. 
The potential of the electrode of pair n on the boundary xz = h is denoted by V,. exp (/cot) 
and the total charge by Q,. exp (icot). Here co represents the circular frequency and t the time. 
We assume that either the potential or the charge are prescribed on a pair of electrodes in such 
a way that the lower electrode has a potential - V,. exp (icot) if V, is given or a charge - Q,. exp 
(icot) if Q, is given. At least one of the prescribed values V,, Q,, n = 1, ..., N, will not vanish. In 
the remainder the exponential time factor is omitted. 

Since the plate is polarized in the x3-direction, a standing thickness-twist mode with a 
particle displacement U3 in the x3-direction is excited. We assume that U3 is a function of xl 
and ~2. Moreover, a potential V(Xl, xz) will exist both inside and outside the plate. The dis- 
placements U~ and U2 in the xl- and xz-direction, respectively, are supposed to vanish. The 
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only non-zero stresses and electric displacements expressed in derivatives of U3 and V are now 
([73), 

T~3 = (Ec1313 U3+e113 V),~, (2.1a) 

D~ = (e1~3 u3-Se~, V),~, (2.1b) 

where e is 1 or 2. In (2.1) the tensor notation with respect to (x~, x2, x3) is employed. T~3 are 
shear stresses, D~ components of the electric displacement, % ~ 313 is an elastic constant measured 
at constant electric field, e~ 13 a piezoelectric constant and se~ a a dielectric constant measured 
at constant strain. A comma followed by an index cr denotes differentiation with respect to x~. 

The T~3 have to satisfy the equation of motion 

T13,1 -k- T23,2 = ,t/6o 2 U 3 ,  (2.2a) 

where # denotes the mass density and D~ the Maxwell equation 

D1,1 +D2,2 = 0.  (2.2b) 

We assume that outside the plate the electrostatic equations of vacuum hold. Hence, in addition 
to (2.2b), we have 

D~ = - e0 V,~, (2.3) 

where e0 is the permittivity of free space. 
At x2 = +_ h the following transition conditions of electrostatics are valid : 

V(1) V(2) O, (2.4a) , 1  - -  , 2  ~-- 

D (1) - D (2) = F .  (2.4b) 

Here F represents the charge density on the electrodes. 
By means of symmetry considerations a half-space problem is formulated. Let us denote the 

solution for the plate and its environs by 

{V3, V} (xl, x2). (2.5) 

We thus assume that (2.5) satisfies equations (2.1)-(2.4) and the boundary conditions. 
We now introduce the coordinates (xl, x ~ = - x 2 ,  x ~ = - x 3 ) .  With respect to these co- 

ordinates the elastic and dielectric constant are the same ones as in (xl, x2, x3), while the 
piezoelectric constant become the opposite value. Hence the equations (2.1)-(2.4) are also valid 
in the coordinates (x~, x~, x~), provided e3x~ is replaced by -e311. The solution { U3, - V} (x l, 
x~) satisfies these equations in the new coordinates. This solution yields for the electrodes on 
the boundary xz=h corresponding with x ~ = - h  a potential - V ( x x , - h )  and a charge 
density - F ( X l ,  -h). If the potential is prescribed on the electrodes n, we have 

- V ( x ~ ,  - h) = - ( -  V,)  = V . ,  ( 2 . 6 a )  

and if the charge is given, 

fb, F(x,, -h)dxl - ( - Q , )  = Q, (2.6b) 
an 

Consequently, also, the boundary conditions are satisfied. 
Substitution of x~ = - x 2 ,  x~ = - x 3  in the latter solution and simple tensor calculus yield 

{ - U 3, - V} (xt, - x 2 ) .  (2.7) 

Since (2.5) and (2.7) represent the same solution, we obtain the condition 

U3 = V = 0 ,  x 2 = 0 .  

In virtue of (2.8) we can restrict ourselves to the half-space x2 >0.  

(2.8) 
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3. Application of the Fourier transform technique 

The mixed boundary value problem formulated in the preceding section is considered in the 
trapped energy range. Hence we confine ourselves to the frequency interval 

c%< co< co,. (3.1) 

Here coe represents the cut-off frequency of the thickness-twist wave propagation in an infinite 
plate which is completely covered by electrodes, and co, the corresponding frequency in an 
infinite plate without electrodes. In virtue of the restriction (3.1) the energy per unit length 
along the x3-axis is mainly concentrated in the regions a, = x 1 _-< b, of the plate. The amplitudes 
of the unknowns vanish exponentially as Ix1 I--,oe. Substitution of (2.1) into (2.2) yields the 
differential equations 

~ A U3+/~e) 2 U3 = 0 ,  (3.2a) 

A~ = 0 .  (3.2b) 

Here A represents the Laplace operator in the coordinates x ~ and Xz, Dc~ 313 is an elastic constant 
measured at constant electric displacement, 

~ %~3~3 + (e1~3)--~2 (3.3) 
S~ll  

and the function r is defined by 

r = ell 3 U3-S/~ll V. (3.4) 

We denote the Fourier transform of a function f (xl ,  x2) by f *  (4, x2), hence ([8]),  

f*(4,  x2) = ~ -oof(x~' x2)e'r . (3.5) 

Multiplying both sides of (3.2) by (2n)-~ e i~xl and integrating over the whole range of x~, we 
arrive at the following ordinary differential equations, 

/ c1313(- 2 U* * 2 4 3+U3,22)+#o9 U~ = 0 ,  (3.6a) 

- 42 ~* + ~ '22 = 0 .  (3.6b) 

Taking into account condition (2.8) the solution of (3.6) reads 

U* = A sinh ~Xz, (3.7a) 

~* = el l3B sinh ~X2, (3.7b) 

where A and B are arbitrary functions of 4 and ( is given by 

( = C z _  (3.8) 
DC1313/ " 

In order that ~ is a single-valued function of ~, the complex 4-plane is cut along the part of the 
real 4-axis between the two branch points and that branch is chosen which tends to 4 as 
4----> __ ~ .  

Since the faces are free of stresses, (2.1a) yields 

A~ cosh ~h-k2B4 cosh ~h = 0. (3.9) 

The quantity k represents an electromechanical coupling factor, 

k - exla 
(O cl 313Sel l)�89 . (3.10) 

Transforming the equations (2.1b) and (3.4) we obtain the relations 

A sinh ( h - B  sinh 4h - se~ V*(~, h) , (3.11a) 
e l l 3  
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e1~3B~ cosh ~h = D*(~, h). (3.11b) 

Combination of (3.9) and (3.11)yields 

D~(~, h)= -se,a ~ n(r V*(~, h), (3.12) 

where 
(sinh ~h k2 ~ sinh ~h) -~ 

H(~) = \cosh ~h ( cosh ~-h (3.13) 

The region x2 > h is governed by 

A V = 0. (3.14) 

From (3.14) and (2.3) we derive for the outer region 

D*(~, h)= ~o1~1 g*(~, h). (3.15) 

Combining (3.12) and (3.15) we obtain the relation 

F*(~) = {e o sign ~+se11H(~)} ~ V*(~, h), (3.16) 

where F* (4) represents the Fourier transform of the charge density F(r) on the electrodes, 

F * ( ~ ) -  (27r)~ F(r)dr (3.17) 
. . = 1  a n  

The inverse Fourier transform yields 

1 f ~ V(Xl, h) (2rc)2 V*(~, h)e-'r (3.18) 
. - o o  

From (3.16), (3.17) and (3.18) we derive the equation 

f ~176 e-'r ~, fb"F(r)e'r h). (3.19) 
-oo {Co sign ~+Sel~H(O } r ,=1 an 

The charge density F(r) is determined by subjecting this integral equation to the electrical 
boundary conditions. 

We now introduce the non-dimensional quantities 

X 1 F 

x - - T ,  p = ~ ,  t /=h r  ) ,=h~,  

A, a, b, 
= ~-, B, = h '  7j" = Voo' (3.20) 

f2 = h @c~_~313) ~ h - co G ( P ) -  F(hp), 
n ' 2rc%11 Vo 

where V o is an arbitrary potential. Using (3.20) and denoting the union of the intervals [A,, B,], 
n = 1 . . . . .  N, by L, we can write (3.19) in the form 

f f K(tl)e -'"~ G(p)e'"O dodtl = ~P(x), x e L ,  (3.21) 
- c o  L 

where 
7'(x) = ~ , ,  A,< x< B,. (3.22) 

Neglecting the term eo/Sexl, which is very small for a piezoceramic, we derive from (3.13), 
(3.19) and (3.20), 

_ sinh t/ k2 sinh 2 (3.23) 
cosh  cosh------7" 
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For 2, defined by (3.20), we have the expression 

= (q2  __ n 2 ~-~2)~- . ( 3 . 2 4 )  

In terms of dimensionless frequencies, the trapped energy range (3.1) becomes ([3]), 

Oe< Q < �89 (3.25) 

The lower bound Or, the dimensionless cutoff frequency for a fully electroded plate, equals the 
first positive root of the equation 

nO 
tg rcf2 - k2 . (3.26) 

4. D i s c u s s i o n  o f  the integral  equat ion  

The function K (q) has simple poles, which are solutions of 

cosh q = 0 ,  (4.1a) 

cosh 2 = 0 .  (4.1b) 

Equation (4.1a) yields the values 

q = + in (l+�89 l = 0, 1, 2 , . . . .  (4.2) 

Solving (4.1b) with 2 given by (3.24), we obtain 

q 2  n 2 {~--~2 l q -  1 2 . = - (  3 )}  (4.3) 

In virtue of (3.25) this relation yields only poles on the imaginary q-axis, 

q =  + i n { ( / + � 8 9  2 2- '  _ - O  }2.. (4.4) 

Defining 

K (0) = 1 - k z tg nO- 
nO ' (4.5a) 

sinh nO 
-- k 2 (4.5b) 

K (nO) nO cosh nO ' 

K(q) is an analytic function in the complex q-plane except at the poles on the imaginary axis 
given by (4.2) and (4.4). We observe that K(q) vanishes as (1 -k2 ) /q  for q ~  +__ ~ .  

Physical considerations permit the assumption that G(p) has a continuous derivative for 
Aa < p < B, and a square-root singularity at p = A, and p = B,. We can now write 

fc ? fc K(q)e  -i"~ G(p)ei"Odpdq = G(p) K(q)ei"(P-~)dqdp,  (4.6) 
- C  d A n  A n  - - C  

where C is a positive constant. For C tending to infinity, the left-hahd side of (4.6) tends to the 
left-hand side of (3.21). Since K(q) vanishes as O(1/q) for q-~ 4- o% 

l i m  fCcK(q)e in(P-X)d q (4.7) 

exists for every p except p = x. 
For x an interior point of L, we define the subrange [ x - 6 , ' x  + 6], where 6 is a positive 

number, by Lo. 5 is chosen so small that x -  5 and x + 3 are also interior points of L. If x = A, 
or x = B., n = 1 . . . .  , N, L~ represents the interval [A,, A, + 6] with A. + 6 < B, respectively the 
interval l B , -  6, B,] with B , -  6 > A,. Since (4.7) exists for p r x, the orders of integration in 
(3.21) can be interchanged for p e L - L o .  Then we obtain'the integral equation 

G(p) K(q)ei"~~ + K(q)e  '"x G(p)ei"~ = 7~(x), x e C .  (4.8) 
- L 5  - oo - oo L O 
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An estimation of 

K (r/) e-i,x f r~ G (p) e i"~ dp dr~ (4.9) f O(3 

will now be given. It is clear that integration over a finite q-range yields a contribution of order 
6 as 6-~0. To estimate the integration over the remaining parts, we consider first an interior 
point x of L. Integration by parts yields 

i elnX x+o G(p)ei"PdP = ~ f (x ,  6). (4.10) 
x - ,~ t r/ 

Denoting the derivative of G by G', 

f (x, 6 )=  [e /"G(x +u)],"_=-~_a - fa_a e'"G'(x +u)du. (4.11) 

Since G' is continuous in [ x - a ,  x + 6 ] ,  f (x ,  6) is 0(6). Hence the integrand 

K (r/) f (x, 6) (4.12) 
it/ 

is 0 (6/q 2) as q--* _+ oo and 540 .  Consequently (4.9) converges and is 0 (6) for an interior point x. 
In the interval [A,, A,+6],G(p) can be written in the form 

G(p) = D {1 +O(u)} ,  (4.13) 

where u = p - A ,  and D is a constant. Applying the substitution qu = v, we obtain 

,a .+6 G(p)e'"PdP De '"x - - -dv+O (4.14) 
d a n  J o  U~ 

Substitution of the order term in (4.9) yields a convei:gent integral for r/-~ _ 0% which is 0 (6�89 
Substituting r/6 = w, we obtain 

�9 -T dvdw, (4.15) D -~ dvdr/= D6 -~ w ~ v ~ 
E J 0 ~E 0 

where E is a positive constant. Since K(w/6) is O(5/w) as w o  + ~ and 

f 
w eiV 
o -~ dv (4.16) 

is bounded, the right-hand side of (4.15) converges and is 0(5 ~) as 6 4 0 .  An identical result is 
obtained for x=B, .  In virtue of these statements the integral (4.9) vanishes for 640 ,  hence 
(4.8) simplifies to 

lira fL i f ( P ) f  ~ K(r/)ei"(P-X'dr/dP-- ~Y(x), x ~ L .  (4.17) 
J ~ O  - L  

The integral over the infinite r/-range can be evaluated by means of the theory of residues. There- 
fore we consider 

t c~ K (r/) e 'n(p- ~) dr/. (4.18) 

The contour C~ consists of the part of the real axis between the points r/= _+ hi, where I is a 
positive integer, and is closed by a semi-circle in the upper half-plane for p > x and a semi-circle 
in the lower half-plane for p < x. K(r/) vanishes uniformly on the semi-circles for l--, oo. Hence 
the contributions to (4.18) due to the integration over these arcs vanishes as l--,cc ([9]). 
Determining the residues of K(r/)exp {ir/(p-x)} at the poles (4.2) and (4.4) we obtain 
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f ~_~ K(rl)e'"(o-~)drl= 2rt ,=o[  ~ /e-~'l'-~le~-t k 2 e-thtP-~l ~f l - -~ j ,  (4.19) 

where 

oc, = rt(l+�89 (4.20a) 

fit = ~ { (1 + �89 _ f22}~. (4.20b) 

The sums (4.19) converge uniformly for every positive 6. Hence (4.17) transforms into 

fe-=do-~l e-&lp-xl 
f G "p) ~(x) ,  x s L .  (4.21) lira ~ ( ~ - - ~ l  k2 & ~dp = ~  

) 1 

0~0 I=0  L-L~ 

5. An approach for solving (4.21) 

Equation (4.21) can be solved by dividing each interval [A,, B.] into 2M, sub-intervals, 
separated by points p .. . .  such that 

Pn,2m--Pn, 2m-1 :Pn,2m+l--Pn,2m = tn,rn, m = 1 .... , M.. (5.1) 

In the sub-intervals [P.,2,n-1, Pn,2m+l] the function G(p) is approximated by a quadratic 
polynomial through the points p., 2m-1, P.,2m and p n, 2m+ 1~ yielding 

3 1 G ( p )  ~ On,2m-1 + P - - P  n,2m-1 (29 . .2m-~9. ,2m-1-~g. ,2m+ x) 
tn,m 

+ (P-P",  2m- 1)2 
2(t.,m)2 (g.,2~-l--29,,2,+9.,2m+l), (5.2) 

where 

9.,~ = G(p,,,), n = 1 . . . .  , N, m = 1 . . . . .  2M.+ 1. (5.3) 

Substituting (5.2) into (4.21), integrating which respect to p and requiring that the integral 
equation is satisfied in the points x,,,,, n = 1 . . . . .  N, m = 1, ..., 2M. + 1, we obtain the following 
system of linear equations, 

N N 

E E 
p = l  q = l  

0 . , 2 , -  + w . , , , ,  g . , 2 ,  + 

1 7j (X,,m) 

The coefficients can be written in the form 

Wp,q,i(Xn,m) ~- ~ {I)p,q,i(X . . . .  ~t)-k2vp, q,,(x . . . .  fit). 
l=0 

Using the notation 

= X . . . .  f i l  = P p . 2 q -  1' fi2 = f l p ,  2q+l , [ = tp, q ,  

we have in the limit 6--,0 the expressions 

(5.4) 

(5.5) 

(5.6) 

vp,,,o(X . . . .  = 

e -'(~1 -e) {2 - 3~  + 2e 2 ~2 _ e-  2~ (2 + e~) } 
2o~4 [2 

2 - e-  =~ (2 + 2e~ + ~2 [2) 
0~4/2 , Pp,2q -~- Xn,m , 

e-=(~-a2) {2 - at - e-  2~ (2 + 3et + 2e 2 f2) } 
2~4 t2 

, P l ~  ,~ , 

~2_-_x, 

(5.7a) 
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2e-~(a'-~) { - 1 + e~+ e-2=~(1 +~0}  

2 { -  2 + c~2 ~2 + 2 e-~'(1 + ~/.) ) 
0~4.~2 ~ Dp, 2q = Xn, m 

2 e-={~-a=){- 1 + ~ t + e  -~=' (1 +e~)} 
~x4~2 , ,62_-< s  

(5.7b) 

vp, q , 2 ( x  . . . .  = 

e-=<~'- ~) {2 - cd - e- 2=, (2 + 3e~ + 2c~ 2 ~2)} 
2~4 ~2 

2 - e- =t (2 + 2 ~  + ~2 ~2) 
0{4/.2 ~ Pp, 2q = Xn, rn , 

e- ~(~- ~) {2 - 3el + 2~ 2/_2 _ e-  2=~ (2 + e~) } 
2e4 ~2 

, P l  ~ X  , 

, 102<~- 2 .  

(5.7c) 

If the potentials on the electrodes are given, we have E,N= 1 (2M, + 1) equations for an identical 
number of unknowns 9,,m, n=  1 . . . .  , N, m =  1 . . . .  , 2 M , +  1. After computing the coefficients 
(5.5) we can evaluate the charge distribution on the electrodes by solving (5.4). The total 
charges Q,, n = 1 . . . . .  N, are obtained from the Simpson formula 

Q, = 1~ tn 
m = l  ~ m  (gn, 2 m - 1  + 4 9 . , Z m + f f n ,  2 m + , ) "  (5.8) 

An equation of the form (5.8) is added to the system (5.4) ifa charge Q, is prescribed instead of a 
potential V~. In that case we also have an additional unknown V~, resulting again into a system 
with an identical number of equations and unknowns. 

6. Numerical results for a dual 

An infinitely extended plate is considered with two electrodes on each face. Such a configuration 
is called a dual. The electrode regions are assumed to be symmetrical with respect to the x2-axis ; 
they are given by - B_< x_< - A and A < x_< B. 

For a dual equation (4.21) reads 

lim G ( p ) f ( l p - x t ) d p  = ~ 711, - B < x < < _ - A ,  (6.1a) 
h~O - L j  

lim G ( p ) f ( I p - x l ) d p  = 27 7j2' A < x < B ,  (6.1b) 
6 4 0  L - L  O 

where 

f ( I p - x l )  = t e- 'l"-xi k2e-"'i -xl  
t=o t ~-~ ~ j .  (6.2) 

Substituting x = - x ' ,  equation (6.1a) is transformed to the region A < x'_< B. In the remainder 
the prime is dropped. Writing further 

G(p) = GS(- p )+ G"( -  p) , - B < P < - A , (6.3a) 

G ( p ) =  GS(p)-Ga(p), A <  p< B , (6.3b) 

equations (6.1) transform into 

lim {GS(p)f~(p, x)+ Ga(o)f2(p, x)}dp = ~ ~ ,  (6.4a) 
6--+0 L' - L6 
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lira {GS(p)ft(p, x)-Ga(p,)f2(p, x)}dp = 2nn gu2" (6.4b) 

These equations hold for the range L' ~ [A, B]. For the functions f t  and f2 we have the ex- 
pressions 

fl(P, x) = f ( lp -x l )  + f(p+ x), (6.5a) 
f2(P, x) =f( I  p-  xl) - f(p+ x) . (6.5b) 

G~ (p) denotes a symmetrical charge distribution with respect to the x2-axis and G ~ (p) an anti- 
symmetrical one. 

Substituting 

1 gu OS(p) == ~ ( 1 - [ - g u 2 ) G S ( [ )  (6.6a) 

~176 = (gul-  gu=)o~ (6.6b) 

in (6.4), we now obtain the equations 

lim f G~(p)fl(p, x)dp = 1, (6.7a) 
6-~ 0 3 L '  - L 6 

limo~o JtL'-La G"(P)fz(p, x)dp = 1. (6.7b) 

Hence two independent equations are established governing, respectively, a symmetrical and 
anti-symmetrical vibration. The total charges associated with the distributions G~(p) and 
G"(p) are denoted by Q~ and Q". Representing the dimensionless charge on the electrode 
- B_< x < - A by Q 1, and that on the remaining electrode by Q2, we derive from (6.3) and (6.6) 

1 
Qt = ~ {(QS+ Qa) gul + ( Q S  Q,) gu2}, (6.8a) 

= + s ,gu  
Q2 Q~ (Q + Q )  2}- (6.8b) 

Alternative forms of (6.8) are 

7C 
_ a_~_  8 gut Q~Q,{(Q Q)QI+(Q"-Q~)Qz}, (6.9a) 

and 

7~ 
gu2 QsQa {(Q"--Q )Q1 (Q -}-QS)Q2} (6.9b) 

I { ~ " -  gul+(Q~-Q")Q2} (6.10a) Qt - QS+QO 

1 
712 - Q~+Q, {(Qa-Q~) gua +4~Q2} �9 (6.10b) 

We now distinguish three important cases. Case I: gut and gu2 are prescribed. Charges Qt 
and Q2 then follow from (6.8). The resonant frequencies are those values of (2 for which QS 
or Qa becomes infinite. Case II: Qt and Q2 are given. Then the potentials gu t and 7/2 are deter- 
mined by (6.9) and resonance occurs if QS or Qa vanishes. Case III: The charge of one pair 
of electrodes and the potential of the remaining pair are given, for instance gut and Q2-Applying 
(6.10), Q t and gu2 are evaluated. The condition for resonance now reads that Q~+ Q" vanishes. 

To solve the integral equations (6.7) the approach described in the foregoing section is 
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employed. Hence the interval [A, B] is divided into sub-intervals separated by points Q,, 
such that 

Pzm-- Pzm-1 = P2m+l -- P2m = tin, m = 1, ..., M ,  (6.11) 
with 

p, = A ,  P2M+I = B ,  

t~,= 4 c o s ~ - - c o s  . 

If sets of equations of the form (5.4) are solved, the values GS(p,) and Ga(p,) ,  n =  1, ..., 2 M +  1, 
can be computed and then the charges Q~ and Q" according to (5.8). The coefficients of GS(p,) 

0,9 \ \!~ ' Q \  "',,~,~\\ .~ 'ca .~ I  "~ 
\ "~..k ',," , " ~  - -  ~ I 

o.~ ',., \ '~ "% % ' q  
�9 , ~. " , ~ .  

\ 1 
0,2  "",.... . "~'~=~ 

0 0,2 1 2 3 4 
(B - A ) / 2  - 

Figure 2. Resonance spectrum for A ~0.2 and k=0.66. 

I /  & ,,'-,\ ~.\'., \ \~1 

I ~ '~  ",.X "%",",. \ I 

: \ 

o.2 {o 2:o 3:o ~..o 
( B - A ) / 2  - --- 

Figure 3. Resonance spectrum for A~0.5 and k=0.66. 
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%\ \\k ~.X\ "\ case ]I 
% \ %  \ ~ , ,  . . . . .  ~ 
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Figure 4. Resonance spectrum for A =  1 and k=0.66. 
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0 0,1 0,2 0,3 0,4 Q5 0,6 0,7 

Q- Qe 
Qu - Qe 
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Figure 5. Characteristic impedance for A=0.2, 0.5, 1 and 2, �89  1 and k=0.66. 

and G~ are infinite series of the form (5.5). These series are truncated such that QS and Qa 
are computed with three significant digits. Computations are performed for fixed values of 
k, A and B. Q" and QS are evaluated for a number of values of f2 in the trapped energy range. 
Resonant frequencies for the three mentioned cases are obtained by determining the zeros of 
(Qa)- 1, (QS)- 1, Qa, Qs and Qa + Q+ from the computed values. In the figures 2, 3 and 4 resonance 
spectra are given for k = 0.66 and, respectively, A = 0.2, 0.5 and 1. The ordinate is the quotient 
(f2r--f2e)/(O,,--f2e); f2 r denotes the resonant frequency, f2e the cut-off frequency for a fully 
electroded plate and f2, this frequency for a plate without electrodes. From (3.26) we derive 
Oe=0.3917; as mentioned already, Ou=0.5. The resonances are plotted as a function of the 
ratio width electrodes over thickness plate, i.e. �89 
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Figure 6. Insertion loss in dB for A =0.2, 0.5, 1 and 2, �89 1 and k =0.66. 

1'01 ~ \ \ " \ ' k  
^~ \ \ \ \ \ \ - -exact  solution 

o,8t\\ , , , \  \, \ \ 
~ / \  \ \ \ \ \ \ ' 

00,2 1 2 3 4 
( B -  A ) / 2  ~ - , ' -  

Figure 7. Exact and approximate resonances for case [ with A=0.2 and k=0.66. 

We observe that pairs of resonance curves can be indicated for cases I and II. One curve of 
a pair  represents resonance of the symmetrical  mode and the other one resonance of the 
anti-symmetrical vibration. For  increasing values of A these curves tend towards each other. 
In order to pr6vent the occurrence of overtones, the width of the electrodes must  be smaller 
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Figure 8. Exact and approximate resonances for case 1 with A = 1 and  k=0,66, 

than the thickness of the plate for prescribed potentials on the electrodes. By selecting a 
suitable value of A, the bandwidth desired can be obtained. 

Electrical engineers are also interested in the characteristic impedance and the insertion 
loss. The characteristic impedance is given by 

h# ~ 
nse~ 1 (Vc~313)~f2(QSQ,)_~ . (6.13) 

In figure 5 we have plotted the dimensionless quantity O-~ [QSQ" I -+ for several cases. The 
characteristic impedance is real between tlae zeros and purely imaginary in the remaining 
ranges. In figure 6 the insertion loss, which is a non-dimensional function of the frequency, is 
plotted, with a resistance equal to the maximum characteristic impedance between the zeros. 

Figures 7 and 8 show the fundamental resonances and first overtones for case I due to the 
exact approach and the approximate one, described in [6]. We observe that rather large 
differences occur. Finally; we give in the following table resonant frequencies for case I for 
several values of k, with A = ~ and B 

k (o,-oo)/(~.-~o) 

0.3 0.410 0.810 
0.4 0.325 0.560 
0.5 0,255 0.385 0.980 
0.6 0.200 0.270 0.735 0,970 
0.7 0.150 0.185 0.595 0.705 

Remark 

The approach described in sections 4 and 5 has also been applied to the problem discussed in 
[71 , which was solved earlier in a different way. When the range [0.1] is divided into 16 sub- 
intervals, the results obtained now agree with the resonances given [7] within the number of 
significant digits. 
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